(决胜预测题)-2014中考数学压轴题全揭秘资料专题40 动态几何之直角三角形存在性问题

 
数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
   动态几何形成的是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题。。
在中考中,的重点和难点在于应用数形结合的思想准确地进行分类。
 如图,Rt△ABC中,ACB=90°,AC=BC=4cm,CD=1cm,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,至A点结束,设E点的运动时间为t秒,连接DE,当△BDE是直角三角形时,t的值为    ▲    秒。
 如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,反比例函数在第一象限内的图象经过点A,与BC交于点F,OB=,BF=BC。过点F作EFOB,交OA于点,点P为直线EF上的一个动点,连接PA,PO。若以P、O、A为顶点的三角形是直角三角形,请求出所有点P的坐标。 
            A,F 。
 如图,在Rt△ABC中,∠B=90°,BC=,点D从点C出发沿CA方向以每秒个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动设点D、E运动的时间是t秒(t>0)过点D作DF⊥BC于点F,连接DE、EF当t为何值时,△DEF为直角三角形?请说明理由
原创模拟预测题4. 如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线经过A、B、点若一条与y轴的直线l以每秒2个单位长度的速度向右平移,直线l分别交线段OA、CA和抛物线于点E、M和点P,连结设直线l移动的时间为t(0<t<)秒,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由
若APM为直角,如图1,则点P是抛物线与轴的一个交点,
P(1,0)。
    若PAM为直角,如图2,则PACA,
AOC∽△PEA。。

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个.. 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图

文档格式:
.doc
文档分类:
数学 -- 全国 -- 九年级
文档标签:
数学 中考复习
展开

相关文档

官方公共微信

返回顶部