章节目录
第一讲:定义新运算		……………………………(2)
第二讲:转化单位“1”(一),求
2、设
3、设:
定义新运算(2)
例2、设p、q是两个数,规定:。求
2.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
3.设
4.设M、N是两个数,规定:
定义新运算(3)
例3、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*3=________;210*2=________。
2.如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。
3.规定,
4.如果
定义新运算(4)
例4、规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,
如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?
2.规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,
如果1/⑧-1/⑨=1/⑨×A,那么A=________。
3.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,⑥=5×6×7,
如果1/⑩+1/⑾=1/⑾×□,那么□=________。
4.如果1※2=1+2,2※3=2+3+4,……5※6=5+6+7+8+9+10,那么x※3=54中x=________。
定义新运算(5)
例5、设a⊙b=4a-2b,求x⊙(4⊙1)=34中的未知数x。
2.设a⊙b=3a-2b,已知x⊙(4⊙1)=7求x。
3.对两个整数a和b定义新运算“△”:a△b=  求6△4+8△2。
4.对任意两个整数x和y定于新运算,“*”:x*y=        (其中m是一个确定的整数)。如果1*2=1,那么3*12=________。
定义新运算(6)代数式应用
我们在定义新运算的过程中,会遇到含有未知数的项,在计算过程中我们需要把它当做已知项来计算,最终的结果是一个含有未知数的代数式。
对任意两个整数x和y定于新运算,,那么,
2、对任意两个数a和b定于新运算,=
3、对于任意数X,Y定义新运算,
第二讲  转化单位“1”(一)
知识导航
把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。
如果甲是乙的,乙是丙的,则甲是丙的;
如果甲是乙的,则乙是甲的;
如果甲的等于乙的,则甲是乙的÷=,乙是甲的÷=。
在这类问题中,一班我们假设其中的一个量为“1”,通过题目中的条件,将其他的量转换为具体的数字,然后进行计算。
类型(1)
例1、乙数是甲数的,丙数是乙数的,丙数是甲数的几分之几?
2、乙数是甲数的,丙数是乙数的,丙数是甲数的几分之几?
3、一根管子,第一次截去全长的,第二次截去余下的,两次共截去全长的几分之几?
类型(2)
例2、修一条8000米的水渠,第一周修了全长的,第二周修的相当于第一周的,第二周修了多少米?
2、一堆黄沙60吨,第一次用去总数的,第二次用去的是第一次的1倍,第二次用去黄沙多少吨?
3、大象可活80年,马的寿命是大象的,长颈鹿的寿命是马的,长颈鹿可活多少年?
4、仓库里有化肥60吨,第一次取出总数的,第二次取出余下的,第二次取出多少吨?
类型(3)
例3、晶晶三天看完一本书,第一天看了全书的,第二天看了余下的,第二天比第一天多看了15页,这本书共有多少页?
2、有一批货物,第一天运了这批货物的,第二天运的是第一天的,还剩90吨没有运。这批货物有多少吨?
3、修路队在一条公路上施工。第一天修了这条公路的,第二天修了余下的,已知这两天共修路1200米,这条公路全长多少米?
4、加工一批零件,甲先加工了这批零件的,接着乙加工了余下的。已知乙加工的个数比甲少200个,这批零件共有多少个?
类型(4)
男生人数是女生人数的,女生人数是男生人数的几分之几?
2、停车场里有小汽车的辆数是大汽车的,大汽车的辆数是小汽车的几分之几?
3、水结成冰体积增加,冰化成水体积减少几分之几?
4、如果花布的单价是白布的1倍,则白布的单价是花布的几分之几?
类型(5)
例5、甲数的等于乙数的,甲数是乙数的几分之几,乙数是甲数的几倍?
2、甲数的等于乙数的,甲数是乙数的几分之几?乙数是甲数的几分之几?
3、甲数的1倍等于乙数的,甲数是乙数的几分之几?乙数是甲乙两数和的几分之几?
4、甲数是丙数的,乙数是丙数的,甲数是乙数的几分之几?乙数是甲数的几分之几?(想一想:这题与第一题有什么不同?)
第三讲  转化单位“1”(二)
专题简析:
我们必须重视转化训练。通过转化训练,既可理解数量关系的实质,又可拓展我们的解题思路,提高我们的思维能力。我们可以设定其中的一项为“1”份,或者设定其中的一项为“x”,让后找出其他的量的关系,代入计算结果。
例1、甲数是乙数的,乙数是丙数的,甲、乙、丙的和是216,甲、乙、丙各是多少?
2、甲数是乙数的,乙数是丙数的,甲、乙、丙三个数的和是152,甲、乙、丙三个数各是多少?
3、橘子的千克数是苹果的,香蕉的千克数是橘子的,香蕉和苹果共有220千克,橘子有多少千克?
4、某中学的初中部三个年级中,初一的学生数是初二学生数的,初二的学生数是初三学生数的1倍,这个学校里初三的学生数占初中部学生数的几分之几?
例2、红、黄、蓝气球共有62只,其中红气球的等于黄气球的,蓝气球有24只,红气球和黄气球各有多少只?
2、甲数的等于乙数的,甲、乙两数的和是162,甲、乙两数各是多少?
3、今年8月份,甲所得的奖金比乙少200元,甲得的奖金的正好是乙得奖金的,甲、乙两人各得奖金多少元?
4、商店运来香蕉、苹果和梨子共900千克,香蕉重量的等于苹果重量的,梨子的重量是200千克。香蕉和苹果各多少千克?
例3、已知甲校学生数是乙校学生数的,甲校的女生数是甲校学生数的,乙校的男生数是乙校学生数的,那么两校女生总数占两校学生总数的几分之几?
2、在一座城市中,中学生数是居民的,大学生是中学生数的,那么占大学生总数的的理工科大学生是居民数的几分之几?
3、某人在一次选举中,需的选票才能当选,计算的选票后,他得到的选票已达到当选票数的,他还要得到剩下选票的几分之几才能当选?
4、某校有的学生是男生,男生的想当医生,全校想当医生的学生的是男生,那么全校女生的几分之几想当医生?
例4、仓库里的大米和面粉共有2000袋。大米运走,面粉运作后,仓库里剩下大米和面粉正好相等。原来大米和面粉各有多少袋?
2、甲、乙两人各准备加工零件若干个,当甲完成自己的、乙完成自己的时,两人所剩零件数量相等,已知甲比乙多做了70个,甲、乙两人各准备加工多少个零件?
3、一批水果四天卖完。第一天卖出180千克,第二天卖出余下的,第三、四天共卖出这批水果的一半,这批水果有多少千克?
4、甲、乙两人合打一篇书稿,共有10500字。如果甲增加他的任务的20%,乙减少他的任务的20%,那么甲打的字数就是乙的2倍,问两人原来的任务各是多少?
例5、400名学生参加植树活动,计划每个男生植树20棵,每个女生植树15棵。除抽出25%的男生搞卫生外,其他的同学都按计划完成了植树任务。问共植树多少棵?
2、有一块菜地和一块麦地,菜地的一半和麦地的放在一起是13公顷,麦地的一半和菜地的放在一起是12公顷,那么,菜地有多少公顷?
3、师徒两人加工同样多的零件,师傅要10分钟,徒弟要18分钟。两人共同加工零件168个,如果要在相同的时间内完成,两人各应加工零件多少个?
4、有5元和2元的人民币若干张,其金额之比为15:4。如果5元人民币减少6张,则两种人民币的张数相等。求原来两种人民币的张数各是多少?
第四讲   转化单位“1”(三)
一、知识要点
解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看作单位“1”,将已知条件进行转化,找出所求数量相当于单位“1”的几分之几,再列式解答。
二、精讲精练
例1、有两筐梨。乙筐是甲筐的,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的。甲、乙两筐梨共重多少千克?
2、某小学低年级原有少先队员是非少先队员的,后来又有39名同学加入少先队组织。这样,少先队员的人数是非少先队员的。低年级有学生多少人?
3、王师傅生产一批零件,不合格产品是合格产品的9,后来从合格产品中又发现了2个不合格产品,这时算出产品的合格率是94%。合格产品共有多少个?
4、某校六年级上学期男生占总人数的54%,本学期转进3名女生,转走3名男生,这时女生占总人数的48%。现在有男生多少人?
例2、某学校原有长跳绳的根数占长、短跳绳总数的。后来又买进20根长跳绳,这时长跳绳的根数占长、短跳绳总数的2。这个学校现有长、短跳绳的总数是多少根?
2、阅览室看书的同学中,女同学占,从阅览室走出5位女同学后,看数的同学中,女同学占,原来阅览室一共有多少名同学在看书?
3、一堆什锦糖,其中奶糖占45%,再放入16千克其他糖后,奶糖只占25%,这堆糖中有奶糖多少千克?
4、数学课外兴趣小组,上学期男生占,这学期增加21名女生后,男生就只占了,这个小组现有女生多少人?
例3、有两段布,一段布长40米,另一段长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布所剩长度的,每段布用去多少米?
2、有两根塑料绳,一根长80米,另一根长40米,如果从两根上各剪去同样长的一段后,短绳剩下的长度是长绳剩下的,两根绳各剪去多少米?
3、今年父亲40岁,儿子12岁,当儿子的年龄是父亲的2时,儿子多少岁?
4、仓库里原来存大米和面粉袋数相等,运出800袋大米和500袋面粉后,仓库里所剩的大米袋数时面粉的,仓库里原有大米和面粉各多少袋?
5、甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路时其他三个队的,乙队筑的路时其他三个队的,丙队筑的路时其他三个队的,丁队筑了多少米?
例4、某商店原有黑白、彩色电视机共630台,其中黑白电视机占,后来又运进一些黑白电视机。这时黑白电视机占两种电视机总台数的30%,问:又运进黑白电视机多少台?
2、书店运来科技书和文艺书共240包,科技书占。后来又运来一批科技书,这时科技书占两种书总和的1,现在两种书各有多少包?
3、某市派出60名选手参加田径比赛,其中女选手占,正式比赛时,有几名女选手因故缺席,这样女选手人数占参赛选手总数的1。问:正式参赛的女选手有多少人?
4、把12千克的盐溶解于120千克水中,得到132千克盐水,如果要使盐水中含盐8%,要往盐水中加盐还是加水?加多少千克?
5、东风水果店上午运进梨和苹果共1020千克,其中梨占水果总数的;下午又运进梨若干千克,这时梨占两种水果总数的,下午运进梨多少千克?
例5、一堆煤,运走的比总数的多120吨,剩下的比运走的多60吨,这堆煤原有多少吨?
2、修一条路,第一天修了全长的多60米,第二天修的长度比第一天的多35米,还剩100米没有修,这条路全长多少米?
3、修一条路,第一天修了全长的多60米,第二天修的长度比第一天的少35米,这两天共修路420米,这条路全长多少米?
4、某工程队修筑一条公路,第一天修了全长的,第二天修了剩下部分的又20米,第三天修的是第一天的又30米,这样,正好修完,这段公路全长多少米?
第五讲  方程(1)
一、知识要点
有一些数量关系比较复杂的分数应用题,用算术方法解答比较繁、难,甚至无法列式算式,这时我们可根据题中的等量关系列方程解答。
二、精讲精练
例1、某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有合格,两种零件合格的共有42个,两种零件各生产了多少个?
2.思源教育参加数学竞赛的女生比男生多28人,男生全部得优,女生的得优,男、女生得优的一共有42人,男、女生参赛的各有多少人?
3.有两盒球,第一盒比第二盒多15个,第二盒中全部是红球,第一盒中的 是红球,已知红球一共有69个,两盒球共有多少个?
4.六年级甲班比乙班少4人,甲班有的人、乙班有的人参加课外数学组,两个班参加课外数学组的共有29人,甲、乙两班共有多少人?
例2、阅览室看书的学生中,男生比女生多10人,后来男生减少,女生减少,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书?
2.某小学去年参加无线电小组的同学比参加航模小组的同学多5人。今年参加无线电小组的同学减少,参加航模小组的人数减少0,这样,两个组的同学一样多。去年两个小组各有多少人?
3.原来甲、乙两个书架上共有图书900本,将甲书架上的书增加,乙书架上的书增加0,这样,两个书架上的书就一样多。原来甲、乙两个书架各有图书多少本?
4.某车间昨天生产的甲种零件比乙种零件多700个。今天生产的甲种零件比昨天少0,生产的乙种零件比昨天增加0,两种零件共生产了2065个。昨天两种零件共生产了多少个?
例3、甲、乙两校共有22人参加数学竞赛,甲校参加人数的比乙校参加人数的少1人,甲、乙两校各有多少人参加?
2.学校图书馆买来文艺书和连环画共126本,文艺书的比连环画的少7本,图书馆买来的文艺书和连环画各是多少本?
3.思源教育有学生465人,其中女生的比男生的少20人,男、女生各有多少人?
4.思思和源源共加工零件62个,思思加工零件个数的比源源的少2个,两人各加工了多少个?
例4、甲书架上的书是乙书架上的,两个书架上各借出154本后,甲书架上的书是乙书架上的,甲、乙两书架上原有书各多少本?
2.儿子今年的年龄是父亲的,4年后儿子的年龄是父亲的,父亲今年多少岁?
3.某校六年级男生是女生人数的,后来转进2名男生,转走3名女生,这时男生人数是女生的。原来男、女生各有多少人?
4.第一车间人数的等于第二车间人数的0,第一车间比第二车间多50人。两个车间各有多少人?
例5、一个班女同学比男同学的多4人,如果男生减少3人,女生增加4人,男、女生人数正好相等。这个班男、女生各有多少人?
2.某学校的男教师比女教师的多8人。如果女教师减少4人,男教师增加8人,男、女教师人数正好相等。这个学校男、女教师各有多少人?
3.某无线电厂有两个仓库。第一仓库储存的电视机是第二仓库的3倍。如果从第一仓库取出30台,存入第二仓库,则第二仓库就是第一仓库的。两个仓库原来各有电视机多少台?
4.某工厂第一车间的人数比第二车间的人数的少30人。如果从第二车间调10人到第一车间,则第一车间的人数就是第二车间的。求原来每个车间的人数。 
5、复活赛上,甲乙二人根据投票结果决出最后一个参加决赛名额,投票总人数固定,每票必须投给甲乙二人之一。最后,乙的得票数为甲的得票数的,甲胜出。但是。若乙的得票数至少增加4票,则可胜甲。请计算甲乙所得的票数?(21届华杯赛试题)
第六讲  假设法解题
一、知识要点
在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
对于常见的使用字母,文字替代的算式,解题过程中常常发现其中缺少一些我们需要的的条件,而仔细分析后会发现,这些条件并不是不可或缺的,为此,我们常常假设一个数字代入(方便计算),然后进行解答。
对于常见应用题,我们先通过假设来改变题目的条件,然后再和已知条件搭配计算,更加便于我们找到巧妙的解题思路。
已知甲和乙成一定的比,甲乙改变一定的数量关系后,两者之间变为了新的比的关系,通过关系的变化,我们可以快速的找到两者之间的变化规律,假设其中一个量为单位“1”,从而得出其他的量。
二、精讲精练
例1、如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
2、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
3、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?
4、甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨?
例2、足球门票15元一张,降价后观众增加一倍,收入增加,问一张门票降价多少元?
2、某班一次考试,平均分为70分,其中及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?
3、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?
4、五年级三个班的人数相等。一班的男生人数和二班的女生人数相等,三班的男生是全部男生的,全部女生人数占全年级人数的几分之几?
例3、思思在一个小山坡来回运动。先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求思思的平均速度?
2、源源上山的速度是每小时3千米,下山的速度是每小时6千米,求源源上山后又沿原路下山的平均速度?
3、张师傅骑自行车往返A、B两地。去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?
4、小王骑摩托车往返A、B两地。平均速度为每小时48千米,如果他去时每小时行42千米,那么他返回时的平均速度是每小时行多少千米?
例4、某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?
2、某班男生人数是女生的,男生平均身高为138厘米,全班平均身高为132厘米。问:女生平均身高是多少厘米?
3、某班男生人数是女生的,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?
4、一个长方形每边增加10%,那么它的周长增加百分之几?它的面积增加百分之几?
例5、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问狗再跑多远,马可以追到它?
2、猎狗前面26步远的地方有一野兔,猎狗追之。兔跑8步的时间狗只跑5步,但兔跑9步的距离仅等于狗跑4步的距离。问兔跑几步后,被狗抓获?
3、猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔再跑多远,猎狗可以追到它?
4、狗和兔同时从A地跑向B地,狗跑3步的距离等于兔跑5步的距离,而狗跑2步的时间等于兔跑3步的时间,狗跑600步到达B地,这时兔还要跑多少步才能到达B地?
第七讲   方程2(二元一次方程组)
一、知识要点
当在解题过程中遇到两个平行的量,题目中出现两个等量关系时,我们可以根据题目中涉及的问题,假设两个未知的量x,y分别代入方程,这样便于我们快速准确的找到答案。
例1、甲、乙两数之和是185,已知甲数的与乙数的的和是42,求两数各是多少?
2、甲、乙两人共有钱150元,甲的与乙的0的钱数和是35元,求甲、乙两人各有多少元钱?
3、甲、乙两个消防队共有338人。抽调甲队人数的,乙队人数的,共抽调78人,甲、乙两个消防队原来各有多少人?
4、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的多50吨,五月份完成总数的少70吨,还有420吨没完成,第二季度原计划生产多少吨?
例2、彩色电视机和黑白电视机共250台。如果彩色电视机卖出,则比黑白电视机多5台。问:两种电视机原来各有多少台?
2、姐妹俩养兔120只,如果姐姐卖掉,还比妹妹多10只,姐姐和妹妹各养了多少只兔?
3、学校有篮球和足球共21个,篮球借出后,比足球少1个,原来篮球和足球各有多少个?
4、小明甲养的鸡和鸭共有100只,如果将鸡卖掉0,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?
例3、师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的与徒弟加工零件个数的的和为49个,师、徒各加工零件多少个?
2、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的和黑白电视机的,共卖出57台。问:原来彩色电视机和黑白电视机各有多少台?
3、甲、乙两个消防队共有336人,抽调甲队人数的、乙队人数的,共抽调188人参加灭火。问:甲、乙两个消防队原来各有多少人?
4、学校买来足球和排球共64个,从中借出排球个数的和足球个数的后,还剩下46个,买来排球和足球各是多少个?
例4、甲、乙两数的和是300,甲数的比乙数的多55,甲、乙两数各是多少?
2、畜牧场有绵羊、山羊共800只,山羊的比绵羊的多50只,这个畜牧场有山羊、绵羊各多少只?
3、师傅和徒弟共加工零件840个,师傅加工零件的个数的比徒弟加工零件个数的多60个,师傅和徒弟各加工零件多少个?
4、某校六年级甲、乙两个班共种100棵树,乙班种的0比甲班种的少16棵,两个班各种多少棵?
例5、育红小学上学期共有学生750人,本学期男学生增加,女学生减少,共有710人,本学期男、女学生各有多少人?
2、金放在水里称,重量减轻9,银放在水里称,重量减少0,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?
3、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人? 
4、袋子里原有红球和黄球共119个。将红球增加,黄球减少后,红球与黄球的总数变为121个。原来袋子里有红球和黄球各多少个?
第八讲  方程(3)
一、知识要点
已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。
应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为x,然后通过假设,找出变化前后的相差数相当于x的几分之几,从而求出x的量,其他要求的量就迎刃而解了。
二、精讲精练:
例1、两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?
2.思思原有书的本数是源源的5倍,若两人同时各借出5本给其他同学,则思思书的本数是源源的10倍,两人原来各有书多少本?
3.在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。求中、小学原来各植树多少棵?
4.两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。求第二堆煤原来是多少吨?
例2、王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?
2.甲书架上的书比乙书架上的3倍多50本,若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上的2倍,甲、乙两个书架原来各有多少本书?
3.上学年,马村中学的学生比牛庄小学的学生的2倍多54人,本学年马村中学增加了20人,牛庄小学减少了8人,则马村中学的学生比牛庄小学的学生的4倍少26人,上学年马村中学和牛庄小学各有学生多少人?
4.箱子里有红、白两种玻璃球,红球比白球的3倍多2粒,每次从箱子里取出7粒白球和15粒红球,若干次后,箱子里剩下3粒白球和53粒红球,那么,箱子里白球原有多少粒?
1、小红的彩笔枝数是小刚的,两人各买5枝后,小红的彩笔枝数是小刚的,两人原来各有彩笔多少枝?
2.小华今年的年龄是爸爸年龄的,四年后小华的年龄是爸爸的,求小华和爸爸今年的年龄各是多少岁?
3.小红今年的年龄是妈妈的,10年后小红的年龄是妈妈的,小红今年多少岁?
4.甲书架上的书是乙书架上的,甲、乙两个书架上各增加90本后,甲书架上的书是乙书架上的,甲、乙两各书架原来各有多少本书?
例3、王芳原有的图书本数是李卫的,两人各捐给“希望工程”10本后,则王芳的图书的本数是李卫的0,两人原来各有图书多少本?
2.甲书架上的书是乙书架上的,从这两个书架上各借出112本后,甲书架上的书是乙书架上的,原来甲、乙两个书架上各有多少本书?
3.小明今年的年龄是爸爸的1,10年前小明的年龄是爸爸的,小明和爸爸今年各多少岁?
4.甲车间的工人是乙车间的,从甲、乙两个车间各抽出30人后,甲车间的工人只占乙车间的,甲、乙两个车间原来各有多少名工人?
例4、某校六年级男生人数是女生的23,后来转进2名男生,转走3名女生,这时男生人数是女生的,现在男、女生各有多少人?
2.甲车间的工人是乙车间的,后来甲车间增加20人,乙车间减少35人,这样甲车间的人数是乙车间的,现在甲、乙两个车间各有多少人?
3.有一堆棋子,黑子是白子的,现在取走12粒黑子,添上18粒白子后,黑子是白子的2,现在白子、黑子各有多少粒?
4.爱华小学和曙光小学的同学参加小学数学竞赛,去年的比赛中,爱华小学得一等奖的人数是曙光小学的2.5倍。今年的比赛中,爱华小学得一等奖的人数减少了1人,曙光小学增加了6人,这时曙光小学得一等奖的人数是爱华小学的2倍。两校去年的一等奖的同学各有多少人?
第九讲  倒推法解题
一、知识要点
有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
二、精讲精练
例1、一本文艺书,小明第一天看了全书的,第二天看了余下的,还剩下48页,这本书共有多少页?
2.某班少先队员参加劳动,其中的人打扫礼堂,剩下队员中的打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?
3.一辆汽车从甲地出发,第一天走了全程的,第二天走了余下的,第三天走了250千米到达乙地。甲、乙两地间的路程是多少千米?
4、把一堆苹果分给四个人,甲拿走了其中的,乙拿走了余下的,丙拿走这时所剩的,丁拿走最后剩下的15个,这堆苹果共有多少个?
例2、筑路队修一段路,第一天修了全长的又100米,第二天修了余下的 ,还剩500米,这段公路全长多少米?
2.一堆煤,上午运走,下午运的比余下的还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?
3.用拖拉机耕一块地,第一天耕了这块地的又2公顷,第二天耕的比余下的多3公顷,还剩下35公顷,这块地共有多少公顷?
4.一批水泥,第一天用去了多1吨,第二天用去了余下少2吨,还剩下16吨,原来这批水泥有多少吨?
例3、有甲、乙两桶油,从甲桶中倒出给乙桶后,又从乙桶中倒出给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?
2.小华拿出自己的画片的给小强,小强再从自己现有的画片中拿出给小华,这时两人各有画片12张,原来两人各有画片多少张?
3.甲、乙两人各有人民币若干元,甲拿出给乙后,乙又拿出给甲,这时他们各有90元,他们原来各有多少元?
4.一瓶酒精,第一次倒出,然后倒回瓶中40克,第二次再倒出瓶中酒精的,第三次倒出180克,瓶中好剩下60克,原来瓶中有多少克酒精?
例4、甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?
2.甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。再从丙班调出与这时甲班相同的人数给甲班,这样,甲、乙、丙三个班人数相等。原来甲班比乙班多多少人?
3.甲、乙、丙三个盒子各有若干个小球,从甲盒拿出4个放入乙盒,再从乙盒拿出8个放入丙盒后,三个盒子内的小球个数相等。原来乙盒比丙盒多几个球?
4.甲、乙、丙三个仓库面粉袋数的比是6:9:5,如果从乙仓库拿出400袋平均分给甲、丙两仓库,则甲、乙两个仓库的数量相等。这三个仓库共存面粉多少袋?
例5、甲、乙两个仓库各有粮食若干吨,从甲仓库运出到乙仓库后,又从乙仓库运出到甲仓库,这时甲、乙两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几分之几?
2.甲、乙两个仓库各有粮食若干吨,从甲仓库运出到乙仓库后,又从乙仓库运出到甲仓库,这时甲、乙两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几分之几?
3.甲、乙两个仓库各有粮食若干吨,从甲仓库运出到乙仓库后,又从乙仓库运出到甲仓库,这时甲、乙两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几分之几?
4.甲、乙两个仓库各有粮食若干吨,从甲仓库运出到乙仓库后,又从乙仓库运出到甲仓库,这时乙仓库的粮食是甲仓库的0。原来甲仓库的粮食是乙仓库的几分之几?
第十讲  比的应用(一)
一、知识要点
我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。运用这种方法解决一些实际问题可以化难为易,化繁为简。
二、精讲精练
例1、甲数是乙数的,乙数是丙数的,甲、乙、丙三数的比是( ):( ):( )。
2.甲数是乙数的,乙数是丙数的,甲、乙、丙三数的比是( ):( ):( )。
3.甲数是乙数的,甲数是丙数的,甲、乙、丙三数的比是( ):( ):( )。
4.甲数是丙数的,乙数是丙数的2又,甲、乙、丙三数的比是( ):( ):( )。
2、光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5。这三个小组各有多少人?
3.某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1。每种作物各是多少公亩?
4.黄山小学六年级的同学分三组参加植树。第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2。已知第一组的人数比二、三组人数的总和少15人。六年级参加植树的共有多少人?
5.科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7。已知数学组与科技组共有69人。数学组比作文组多多少人?
例2、甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。原来甲校有图书多少本?
2.小明读一本书,已读的和未读的页数比是1:5。如果再读30页,则已读和未读的页数之比为3:5。这本书共有多少页?
3.甲、乙两包糖的重量比是4:1。从甲包取出130克放入乙包后,甲、乙两包糖的重量比为7:5。原来甲包有多少克糖?
4.五年级三个班举行数学竞赛。一班参加比赛的占全年级参赛总人数的,二班与三班参加比赛人数的比是11:13,二班比三班少8人。一班有多少人参加了数学竞赛?
例3、从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得,二儿子分得,小儿子分得,但不能把牛卖掉或杀掉。三个儿子按照老人的要求怎么也不好分。后来一位邻居顺利地把17头牛分完了,你知道这到底是怎么回事吗?
2.图书室取出一批书,按照一年级得,二年级得,三年级得,正好是41本,各年级各得多少本?
3.古罗马富豪约翰逊再临终前,对怀孕的妻子写下这样一份遗嘱:如果生下来是个男孩,就把遗产的三分之二给儿子,母亲拿三分之一;如果生下来的是女孩就把遗产的三分之一给女儿,三分之二给母亲。结果他的妻子生了双胞胎,一男一女,这是他没有预料到的。求出接近于遗嘱条件,把遗产分给三个继承人的比。
(1)从儿子、母亲、女儿所得的比例来看,他们三人所得的遗产的比是():( ):( )。
(2)从母亲至少得遗产的来看,儿子、母亲、女儿所得遗产的比是( ):( ):( )。
4.甲、乙、丙三人共做零件900个。甲做总数的30%,乙比丙多做。三人各做多少个?
例4、两个相同的瓶子装满酒精溶液。一个瓶中酒精与水的体积之比是3:1,另一个瓶中酒精与水的体积之比是4:1。若把两瓶酒精溶液混合,混合液中酒精与水的体积之比是多少?
2.两块一样重的合金,一块合金中铜与锌的比是2:5,另一块合金中铜与锌的比是1:3。现将两块合金合成一块,求出锌合金中铜与锌的比。
3.将一条公路平均分给甲、乙两个工程队修筑。甲队已修的与剩下的比是2:1,乙队已修的与剩下的比是5:2。这条公路已修了全长的几分之几?
4、光华电视机厂上半年生产的电视机产量占全年的,照这样的速度计算,全年可超产1000台。这个工厂上半年生产电视机多少台?
第十一讲   比的应用(二)
一、知识要点
比是反映数量关系的一种常见形式,也是解数学题的一种重要工具,有了它,我们处理倍数关系、解答分数应用题就方便灵活得多。在这一讲,我们讲探讨稍复杂的比是应用题。
二、精讲精练
例1、甲、乙两个学生放学回家,甲要比乙多走的路,而乙走的时间比甲少1,求甲、乙两人速度的比。
2.小明和小芳各走一段路。小明走的路程比小芳多,小芳用的时间比小明多。求小明和小芳速度的比。
3.甲走的路程比乙多,乙用的时间比甲多。求甲、乙的速度比。
4.一个人步行每小时走5千米,如果骑自行车每1千米比步行少用8分钟。这个人骑自行车的速度和步行速度的比是多少?
例2、制造一个零件,甲需6分钟,乙需5分钟,丙需4.5分钟。现在有1590个零件的制造任务分配给他们三个人,要求在相同的时间内完成,每人应该分配到多少个零件?
2.加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟。现在有1825个零件需要甲、乙、丙三人加工。如果规定用同样的时间完成任务,那么各应加工多少个?
3.甲、乙、丙三人在同一时间里共制造940个零件。甲制造一个零件需5分钟,比乙制造一个零件所用的时间多25%,丙制造一个零件所用的时间比甲少。甲、乙、丙各制造了多少个零件?
4.加工某种零件要三道工序,专做第一、二、三道工序的工人每小时分别能完成零件48个,32个,28个,现有118名工人,要使每天三道工序完成的零件个数相同,每道工序应安排多少工人?
例3、两个服装厂一个月内生产服装的数量是6:5,两厂西服价格的比是11:10。已知两厂这个月内总产值为6960万元。两厂的产值各是多少万元?
2.甲、乙两个长方形长的比是4:5,宽的比是3:2,面积的和是242平方厘米。求甲、乙两个长方形的面积分别是多少平方厘米?
3.苹果和梨的单价的比是6:5,王大妈买的苹果和梨的重量的比是2:3,共花去18元。王大妈买苹果和梨各花了多少元?
4.大、小两种苹果,其单价比是5:4,重量比是2:3。把两种苹果混合,成为100千克的混合苹果,单价为每千克4.40元。大、小两种苹果原来每千克各是多少元?
例4、A、B两种商品的价格比是7:3。如果它们的价格分别上涨70元,它们的价格比就是7:4,这两种商品原来的价格各是多少元?
2.甲、乙两个建筑队原有水泥重量的比是4:3。甲队给乙队54吨水泥后,甲、乙两队水泥重量的比是3:4。原来甲队有水泥多少吨?
3.甲书架上的书是乙书架上的,两书架上各增加154本后,甲书架上的书是乙书架上的,甲、乙两书架上原来各有多少本书?
4.兄弟两人,每年收入的比是4:3,每年支出的比是18:13。从年初到年底,他们都结余720元。他们每年的收入各是多少元?
例5、如图是甲、乙、丙三地的线路图,已知甲地到丙地的路程与乙地到丙地的路程比是1:2。王刚以每小时4千米的速度从甲地步行到丙地,李华同时以每小时10千米的速度从乙地骑自行车去丙地,他比王刚早1小时到达丙地。甲、乙两地相距多少千米?
2.一辆汽车在甲、乙两站间行驶,往返一次共用去4小时(停车时间不算在内)。汽车去时每小时行45千米,返回时每小时行30千米。甲、乙两地相距多少千米?
3.甲做3000个零件比乙做2400个零件多用1小时,甲、乙工作效率的比是6:5。甲、乙每小时各做多少个?
4.下图是甲、乙、丙三地的路线图。已知甲地到丙地的路程与乙地到丙地的路程的比是2:3。一辆货车以每小时40千米的速度从甲地开往丙地,一辆客车同时以每小时50千米的速度从乙地开往丙地,客车比火车迟1小时到达丙地。求甲、乙两地的路程?
第十二讲  用“组合法”解工程问题
一、知识要点
在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
二、精讲精练
例1、一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的0,乙队单独完成全部工程需要几天?
2.师、徒二人合做一批零件,12天可以完成。师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的0。如果这批零件由师傅单独做,多少天可以完成?
3.某项工程,甲、乙合做1天完成全部工程的4。如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的124。甲、乙两队单独完成这项工程各需多少天?
4.甲、乙两队合做,20天可完成一项工程。先由甲队独做8天,再由乙队独做12天,还剩这项工程的5。甲、乙两队独做各需几天完成?
例2、一项工程,甲队独做12天可以完成。甲队先做了3天,再由乙队做2天,则能完成这项工程的。现在甲、乙两队合做若干天后,再由乙队单独做。做完后发现两段所用时间相等。求两段一共用了几天?
2.一项工程,甲队独做15天完成。若甲队先做5天,乙队再做4天能完成这项工程的5。现由甲、乙两队合做若干天后,再由乙队单独做若干天。做完后发现,两段时间相等。这两段时间一共是几天?
3.一项工程,甲、乙合做8天完成。如果先让甲独做6天,再由乙独做,完成任务时发现乙比甲多了3天。乙独做这项工程要几天完成?
4.某工作,甲单独做要12天,乙单独做要18天,丙单独做要24天。这件工作先由甲做了若干天,再由乙接着做;乙做的天数是甲3倍,再由丙接着做,丙做的天数是乙的2倍。终于完成了这一工作。问总共用了多少天?
例3、移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的16没有栽,已知哥哥每小时比弟弟每小时多栽7棵。共要移栽西红柿苗多少棵?
2.加工一批机器零件,师、徒合做12小时可以完成。先由师傅加工8小时,接着再由徒弟加工6小时,共加工了这批零件的。已知师傅每小时比徒弟多做10个零件。这批零件共有多少个?
3.修一条公路,甲、乙两队合做6天可以完成。先由甲队修5天,再由乙队修3天,还剩这条公路的0没有修。已知甲队每天比乙队多修20米。这条公路全长多少米?
4.修一段公路,甲队独修要40天,乙队独修要用24天。两队同时从两端开工,结果在距中点750米处相遇。这段公路全长多少米?
例4、一项工作,甲、乙、丙3人合做6小时可以完成。如果甲工作6小时后,乙、丙合做2小时,可以完成这项工作的;如果甲、乙合做3小时后,丙做6小时,也可以完成这项工作的。如果由甲、丙合做,需几小时完成?
2.一项工作,甲、乙、丙三人合做,4小时可以完成。如果甲做4小时后,乙、丙合做2小时,可以完成这项工作的18;如果甲、乙合做2小时后,丙再做4小时,可以完成这项工作的18。这项工作如果由甲、丙合做需几小时完成?
3.一项工程,甲、乙合做6天可以完成,乙、丙合做10天可以完成。现在先由甲、乙、丙合做3天后,余下的乙再做6天则可以完成。乙独做这项工程要几天就可以完成?
4.一项工程,甲、乙两队合做10天完成,乙、丙两队合做8天完成。现在甲、乙、丙三队合做4天后,余下的工程由乙队独做5又天完成。乙队单独做这项工程需多少天可以完成?
5.一件工作,甲、乙合做4小时完成,乙、丙合做5小时完成。现在由甲、丙合做2小时后,余下的由乙6小时完成。乙独做这件工作需几小时才能完成?
例5、一条公路,甲队独修24天可以完成,乙队独修30天可以完成。先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成。如果由甲、乙、丙三队同时开工修这条公路,几天可以完成?
2、一件工作,甲单独做12小时完成。现在甲、乙合做4小时后,乙又用6小时才完成。这件工作始终由甲、乙合做几小时可以完成?
3.一条水渠,甲队独挖120天完成,乙队独挖40天完成。现在两队合挖8天,剩下的由丙队加入一起挖,又用12天挖完。这条水渠由丙队单独挖,多少天可以完成?
4.一件工作,甲、乙合做6天可以完成,乙、丙合做10天可以完成。如果甲、丙合做3天后,由乙单独做,还要9天才能完成。如果全部工作由3人合做,需几天可以完成?
5.一项工程,甲、乙两队合做30天完成,甲队单独做24天后,乙队加入,两队又合做了12天。这时甲队调走,乙队又继续做了15天才完成。甲队独做这项工程需要多少天?
第十三讲   浓度问题(方程4)
一、知识要点
在百分数应用题中有一类叫溶液配比问题,即浓度问题。我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。这个比值就叫糖水的含糖量或糖含量。类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,
浓度=溶质质量/溶液质量×100%=溶质质量/(溶质质量+溶剂质量)×100%
解答浓度问题,首先要弄清什么是浓度。在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。
浓度问题变化多,有些题目难度较大,计算也较复杂。要根据题目的条件和问题逐一分析,也可以分步解答。
浓度问题常常需要我们考虑三个量:溶质、溶剂、溶液的变化关系。一般我们需要首先找到不变的量,然后在根据题意列方程。
二、精讲精练
例1、有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?
2.现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?
3.有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?
4.有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?
例2、一种35%的新农药,如稀释到1.75%时,治虫最有效。用多少千克浓度为35%的农药加多少千克水,才能配成1.75%的农药800千克?
2.用含氨0.15%的氨水进行油菜追肥。现有含氨16%的氨水30千克,配置时需加水多少千克?
3.仓库运来含水量为90%的一种水果100千克。一星期后再测,发现含水量降低到80%。现在这批水果的质量是多少千克?
4.一容器内装有10升纯酒精,倒出2.5升后,用水加满;再倒出5升,再用水加满。这时容器内溶液的浓度是多少?
例3、现有浓度为10%的盐水20千克。再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?
2.在100千克浓度为50%的硫酸溶液中,再加入多少千克浓度为5%的硫酸溶液就可以配制成25%的硫酸溶液?
3.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克混合后所得到的酒精溶液的浓度是多少?
4.在20%的盐水中加入10千克水,浓度为15%。再加入多少千克盐,浓度为25%?
例4、将20%的盐水与5%的盐水混合,配成15%的盐水600克,需要20%的盐水和5%的盐水各多少克?
2.两种钢分别含镍5%和40%,要得到140吨含镍30%的钢,需要含镍5%的钢和含镍40%的钢各多少吨?
3.甲、乙两种酒各含酒精75%和55%,要配制含酒精65%的酒3000克,应当从这两种酒中各取多少克?
4.甲、乙两只装糖水的桶,甲桶有糖水60千克,含糖率为40%;乙桶有糖水40千克,含糖率为20%。要使两桶糖水的含糖率相等,需把两桶的糖水相互交换多少千克?
例5、甲、乙、丙3个试管中各盛有10克、20克、30克水。把某种质量分数的盐水10克倒入甲管中,混合后取10克倒入乙管中,再混合后从乙管中取出10克倒入丙管中。现在丙管中的盐水的质量分数为0.5%。最早倒入甲管中的盐水质量分数是多少?
2.从装满100克80%的盐水中倒出40克盐水后,再用清水将杯加满,搅拌后再倒出40克盐水,然后再用清水将杯加满。如此反复三次后,杯中盐水的浓度是多少?
3.甲容器中又8%的盐水300克,乙容器中有12.5%的盐水120克。往甲、乙两个容器分别倒入等量的水,使两个容器中盐水的浓度一样。每个容器应倒入多少克水?
4.甲种酒含纯酒精40%,乙种酒含纯酒精36%,丙种酒含纯酒精35%。将三种酒混在一起得到含酒精38.5%的酒11千克。已知乙种酒比丙种酒多3千克,那么甲种酒有多少千克?
第十四讲   面积计算(一)
一、知识要点
计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
图中涉及三角形的量,一般要求我们找到同底或等高的三角形,找出两个三角形的面积关系,同时我们也可以找到边长比一定的相似三角形,从而通过边长比得到面积的比。
例1、已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=BC,求阴影部分的面积。
2.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。求阴影部分的面积。
3.如图所示,AE=ED,DC=BD,S△ABC=21平方厘米。求阴影部分的面积。
4.如图所示,DE=AE,BD=2DC,S△EBD=5平方厘米。求三角形ABC的面积。
例2、两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?
2.两条对角线把梯形ABCD分割成四个三角形,(如图所示),已知两个三角形的面积,求另两个三角形的面积是多少?
3.已知AO=OC,求梯形ABCD的面积(如图所示)。      
4.已知三角形AOB的面积为15平方厘米,线段OB的长度为OD的3倍。求梯形ABCD的面积。(如图所示)。
例3、四边形ABCD的对角线BD被E、F两点三等分,且四边形AECF的面积为15平方厘米。求四边形ABCD的面积(如图所示)。
2.四边形ABCD的对角线BD被E、F、G三点四等分,且四边形AECG的面积为15平方厘米。求四边形ABCD的面积(如图)。
3.已知四边形ABCD的对角线被E、F、G三点四等分,且阴影部分面积为15平方厘米。求四边形ABCD的面积(如图所示)。    
4.如图所示,求阴影部分的面积(ABCD为正方形)。
例4、如图所示,BO=2DO,阴影部分的面积是4平方厘米。那么,梯形ABCD的面积是多少平方厘米?
2.如图所示,阴影部分面积是4平方厘米,OC=2AO。求梯形面积。
3.已知OC=2AO,S△BOC=14平方厘米。求梯形的面积(如图所示)。   
4.已知S△AOB=6平方厘米。OC=3AO,求梯形的面积(如图所示)。       
例5、如图所示,长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF的面积是4,求三角形ABC的面积。
2.如图所示,长方形ABCD的面积是20平方厘米,三角形ADF的面积为5平方厘米,三角形ABE的面积为7平方厘米,求三角形AEF的面积。
3.如图所示,长方形ABCD的面积为20平方厘米,S△ABE=4平方厘米,S△AFD=6平方厘米,求三角形AEF的面积。
4.如图所示,长方形ABCD的面积为24平方厘米,三角形ABE、AFD的面积均为4平方厘米,求三角形AEF的面积。        
第十五讲   面积计算(二)
一、知识要点
在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
涉及圆形面积计算时,我们一般会使用割补法。
例1、求图中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
3.求下面各个图形中阴影部分的面积(单位:厘米)。
4.求下面各个图形中阴影部分的面积(单位:厘米)。
例2、求图中阴影部分的面积(单位:厘米)。
2.计算下面图形中阴影部分的面积(单位:厘米)。
3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
4.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
例3、如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。
2.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
3.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。        
4.如图所示,AB=BC=8厘米,求阴影部分的面积。        
例4、如图19-14所示,求阴影部分的面积(单位:厘米)。
2.如图所示,求四边形ABCD的面积。
3.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。
4.下图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。        
例5、如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。
2.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。
3.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。
4.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
5、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。       
第十六讲   面积计算(3)
一、知识要点
对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。
二、精讲精练
例1、如图所示,求图中阴影部分的面积。
2.如图所示,求阴影部分的面积(单位:厘米)
3.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?
例2、如图所示,求图中阴影部分的面积(单位:厘米)。
2.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。
3.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。    
4.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。
例3、在图中,正方形的边长是10厘米,求图中阴影部分的面积。
2.求下面各图形中阴影部分的面积(单位:厘米)。
3.求下面各图形中阴影部分的面积(单位:厘米)。
4.求下面各图形中阴影部分的面积(单位:厘米)。
例4、在正方形ABCD中,AC=6厘米。求阴影部分的面积。
2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
3.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
4.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。
例5、在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。
2.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。
3.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。 
4.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。
第十七讲  表面积与体积(1)
专题简析:
小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:
(1)充分利用正方体六个面 的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
例1、从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?
2、从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长2厘米的小正方体,剩下部分的表面积是多少?
3、把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小厂房体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?
4、在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面积会发生怎样的变化?
例2、把19个棱长为3厘米的正方体重叠起来,如图4所示,拼成一个立体图形,求这个立体图形的表面积。
要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形(如图27-5所示)。
2、用棱长是1厘米的立方体拼成图6所示的立体图形。求这个立体图形的表面积。
3、一堆积木(如图所示),是由16块棱长是2厘米的小正方体堆成的。它们的表面积是多少平方厘米?
4、一个正方体的表面积是384平方厘米,把这个正方体平均分割成64个相等的小正方体。每个小正方体的表面积是多少平方厘米?
例3、把两个长、宽、高分别是9厘米、7厘米、4厘米的相同长方体,拼成一个 大长方体,这个大长方体的表面积最少是多少平方厘米?
2、把底面积为20平方厘米的两个相等的正方体拼成一个长方体,长方体的表面积是多少?
3、将一个表面积为30平方厘米的正方体等分成两个长方体,再将这两个长方体拼成一个大长方体。求大长方体的表面积是多少。
4、用6块(如图27-8所示)长方体木块拼成一个大长方体,有许多种做法,其中表面积最小的是多少平方厘米?
例4、一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方里,求原长方体的表面积。
2、一个长方体,如果长减少2厘米,则体积减少48立方厘米;如果宽增加5厘米,则体积增加65立方厘米;如果高增加4厘米,则体积增加96立方厘米。原来厂房体的表面积是多少平方厘米?
3、一个厂房体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,其表面积减少了120平方厘米。原来厂房体的体积是多少立方厘米?
4、有一个厂房体如下图所示,它的正面和上面的面积之和是209。如果它的长、宽、高都是质数,这个长方体的体积是多少?
1、如图10所示,将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体。求这个物体的表面积。
2、一个棱长为40厘米的正方体零件(如图27-11所示)的上、下两个面上,各有一个直径为4厘米的圆孔,孔深为10厘米。求这个零件的表面积。
3、用铁皮做一个如图27-12所示的工件(单位:厘米),需用铁皮多少平方厘米?
4、如图27-13所示,在一个立方体的两对侧面的中心各打通一个长方体的洞,在上、下侧面的中心打通一个圆柱形的洞。已知立方体棱长为10厘米,侧面上的洞口是边长为4厘米的正方形,上、下侧面的洞口是直径为4厘米的圆,求该立方体的表面积和体积。
第十八讲  表面积与体积(二)
例1、有大、中、小三个正方体水池,它们的内边长分别为6米、3米、2米。把两堆碎石分别沉在中、小水池里,两个水池水面分别升高了6厘米和4厘米。如果将这两堆碎石都沉在大水池里,大水池的水面升高多少厘米?
2、有大、中、小三个正方体水池,它们的内边长分别为4米、3米、2米。把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米,如果将这两堆碎石都沉没在大水池中,那么大水池水面将升高多少厘米?
3、用直径为20厘米的圆钢,锻造成长、宽、高分别为30厘米、20厘米、5厘米的长方体钢板,应截取圆钢多长(精确到0.1厘米)?
4、将表面积为54平方厘米、96平方厘米、150平方厘米的三个铁质正方体熔铸成一个大正方体(不计损耗),求这个大正方体的体积
例2、一个底面半径是10厘米的圆柱形瓶中,水深8厘米,要在瓶中放入长和宽都是8厘米、高是15厘米的一块铁块,把铁块竖放在水中,水面上升几厘米?
2、一个底面积是15平方厘米的玻璃杯中装有高3厘米的水。现把一个底面半径是1厘米、高5厘米的圆柱形铁块垂直放入玻璃杯水中,问水面升高了多少厘米?
3、一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积市2平方里。在这个杯中放进棱长6厘米的正方形铁块后,水面没有淹没铁块,这时水面高多少厘米?
4、在底面是边长为60厘米的正方形的一个长方形容器里,直立放着一个长100厘米、底面边长为15厘米的正方形的四棱柱铁棍。这时容器里的水50厘米深。现在把铁棍轻轻地向上方提起24厘米,露出睡眠的四棱柱铁棍浸湿部分长多少厘米
例3、某面粉厂有一容积是24立方米的长方体储粮池,它的长是宽或高的2倍。当贴着它一最大的内侧面将面粉堆成一个最大的半圆锥体时,求这堆面粉的体积(如图28-1所示)。
2、已知一个圆锥体的底面半径和高都等于一正方体的棱长,这个正方体的体积是216立方分米。求这个圆锥体的体积。
3、一个正方体的纸盒中如图28-2所示,恰好能装入一个体积6.28立方厘米的圆柱体。纸盒的容积有多大?
4、如图28-3所掷,圆锥形容器中装有3升水,水面告诉正好是圆锥高读的一半。这个容器还能装多少水?
例4、如果把12件同样的长方体物品打包,形成一件大的包装物,有几种包装方法?怎样打包物体的表面积最小呢?
2、如果把长8厘米,宽7厘米,高3厘米的2件同样的长方体物品打包,形成一件大的包装物,有几种包装方法?怎样打包,物体的表面积最小?
3、一个精美小礼品盒的形状是长9厘米,宽6厘米,高4厘米的长方体。请你帮厂家设计一个能装10个小礼品盒的大纸箱,你觉得怎样设计比较合理?为什么?
4、一包香烟的形状是长方体,它的长是9厘米,宽是5厘米,高是2厘米。把10 包香烟包装在一起形成一个大长方体,称为一条。可以怎样包装?算一算需要多少包装纸(包转念能够纸的重叠部分忽略不计)。你认为哪一种包装比较合理?
例5、一只集装箱,它的内尺寸是18×18×18。现在有批货箱,它的外尺寸是1×4×9。问这只集装箱能装多少只货箱?
2、有一个长方体的盒子,从里面量长为40厘米、宽为12厘米、高为7厘米。在这个盒子里放长5厘米、宽4厘米、高3厘米的长方体木块,最多可放几块?
3、从一个长、宽、高分别为21厘米、15厘米、12厘米的厂房体上面,尽可能大地切下一个正方体,然后从剩余的部分再尽可能大地切下一个正方体,最后再从第二次剩余的部分尽可能大地切下一个正方体,剩下的体积是多少立方厘米?
4、现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?
 不积跬步,无以至千里;不积小流,无以成江海。- 2 -                                
- 44 -
A
B
C
F
E
D
_
图
--
1
_
图
--
2
_
图
--
3
_
图
—
4
_
图
—
6

章节目录第一讲:定义新运算……………………………(2)第二讲:转..章节目录第一讲:定义新运算……………………………(2)第二讲:转化单位“1”(一),求2、设3、设:定义新运算(2)例2、设p、q是两个数,规定:。求2.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。3.设4.设M、N是两个数,规定:定义新运算(3)例3、如果1*5=1+11+111+1111+11111,2*4=2+22+

文档格式:
.doc
文档分类:
数学 -- 全国 -- 六年级
文档标签:
数学 人教版,不定方程
展开

相关文档

官方公共微信

返回顶部